先看一一个简单案例,

以上是用的seaborn自带的样例数据,该数据需要开魔法,全局代理才能导入。如果无法导入数据,也可以自己参照数据编写样本数据。数据样式如下:

可视化分布的最常见方法是直方图。直方图是一个条形图,其中表示数据变量的轴被划分为一组离散条柱,并且使用相应条形的高度显示落在每个条柱内的观测值计数:

也可以设置直方图的宽度。

散点图是指在回归分析中,数据点在直角坐标系平面上的分布图,散点图表示因变量随自变量而变化的大致趋势, TrustWallet钱包官网app下载据此可以选择合适的函数对数据点进行拟合。

小提琴图(violin plot)是一种用于可视化数值数据分布情况的图表类型,Trust钱包下载它结合了箱线图和核密度图的优点。小提琴图通常用于比较多个组之间的分布差异,或者显示一个变量在不同类别下的分布情况。
https://www.wangbigqiang.top小提琴图的外形类似于小提琴,中间部分是数据的密度估计曲线,两侧是箱线图或者散点图。小提琴图的横轴通常表示变量或者组别,纵轴表示数值变量的取值范围。每个小提琴图的宽度相同,高度表示数据的密度分布情况。
小提琴图中的箱线图表示数据的五数概括(最小值、下四分位数、中位数、上四分位数、最大值),箱线图两侧的线条表示数据的范围。如果需要比较多个组之间的分布差异,可以将它们放在同一个小提琴图上进行比较。如果需要显示一个变量在不同类别下的分布情况,可以将它们分别画在不同的小提琴图中进行比较。


相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母r表示。取值范围为-1到1,小于0位负相关,大于0为正相关。

有时候需要一次画多个图,需要用到FacetGrid模块。

以上就是python Seaborn绘制统计图全面指南的详细内容,更多关于python Seaborn绘制统计图的资料请关注脚本之家其它相关文章!
